# 5<sup>th</sup> Year

## **Separate Award**

# Chemistry



#### REIGATE GRAMMAR SCHOOL

### **Practice Paper 2**

#### Instructions:

Attempt **ALL** the questions.

Make your answers in the spaces provided on the question paper.

Mark allocations are given in brackets.

# This exam paper consists of 10 questions plus a **PERIODIC TABLE AT THE BACK**

#### Total / 106 Marks

1. This question is about the elements in Group 1 of the periodic table.

Sodium reacts violently with sulphur to form sodium sulphide, Na<sub>2</sub>S.

a) i) Draw a dot and cross diagram to show the bonding present in sodium sulphide.

|     |                                                                                                                    | [3] |
|-----|--------------------------------------------------------------------------------------------------------------------|-----|
| ii) | Explain in terms of the bonding involved why like sodium sulphide has a higher melting point than sodium chloride. |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    | [2] |
| b)  | Potassium reacts even more violently with sulphur.<br>Explain why potassium reacts more violently than sodium.     |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    |     |
|     |                                                                                                                    | [3] |
|     | Total 8 mar                                                                                                        | ks  |

- 2. Diamond and graphite are both formed from carbon atoms. Diamond is the hardest substance on Earth and graphite is soft enough to be used in pencils.
  - a) Draw a diagram to show the arrangement of the carbon atoms in diamond and use it to explain why diamond is the hardest substance on Earth.

[4]

b) Draw a diagram to show the arrangement of the carbon atoms in graphite and use it to explain why graphite is soft enough to be used in pencils.

[4] Total 8 marks

| 3.                                                                          | The most common member of the alcohol homologous series is ethanol.<br>It may be produced by both fermentation or by the catalytic hydration of ethene. |     |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|                                                                             | The equations for these reactions are;                                                                                                                  |     |  |
|                                                                             | Process 1 $\dots C_6H_{12}O_{6(s)} \rightarrow \dots C_2H_5OH_{(l)} + \dots CO_{2(g)}$                                                                  |     |  |
|                                                                             | Process 2 $C_2H_{4(g)}$ + $H_2O_{(g)}$ $\rightarrow$ $C_2H_5OH_{(g)}$                                                                                   |     |  |
| a)                                                                          | Balance the equation for process 1.                                                                                                                     | [1] |  |
| b) i)                                                                       | Which process is the equation for fermentation?                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         | [1] |  |
| ii)                                                                         | State two essential conditions for fermentation.                                                                                                        |     |  |
|                                                                             | Condition 1                                                                                                                                             |     |  |
|                                                                             | Condition 2                                                                                                                                             | [2] |  |
| :::)                                                                        | Cive a use for the otheral produced by formentation                                                                                                     |     |  |
| iii)                                                                        | Give a use for the ethanol produced by fermentation.                                                                                                    |     |  |
| \ .\                                                                        |                                                                                                                                                         | [1] |  |
| c) i) State two essential conditions for the catalytic hydration of ethene. |                                                                                                                                                         |     |  |
|                                                                             | Condition 1                                                                                                                                             |     |  |
|                                                                             | Condition 2                                                                                                                                             | [2] |  |
| ii)                                                                         | Give a use for the ethanol produced by the catalytic hydration of ethene.                                                                               |     |  |
|                                                                             |                                                                                                                                                         | [1] |  |
| d)                                                                          | Suggest two reasons why countries like Cuba manufacture their ethanol by fermentation rather than the catalytic hydration of ethene.                    |     |  |
|                                                                             |                                                                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         |     |  |
|                                                                             |                                                                                                                                                         | [2] |  |

| e)    | Ethanol can be converted back into ethene                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $C_2H_5OH_{(I)} \rightarrow C_2H_{4(g)} + H_2O_{(g)}$                                                                                                                                                     |
| i)    | State the type of reaction used.                                                                                                                                                                          |
|       | [1]                                                                                                                                                                                                       |
| ii)   | State three conditions used for the reaction.                                                                                                                                                             |
|       |                                                                                                                                                                                                           |
|       | [2]                                                                                                                                                                                                       |
| f) i) | Calculate the volume of ethene gas, measure at room temperature and pressure (rtp), that can be formed from 322 kg of ethanol, $C_2H_5OH$ . (The molar volume of any gas = 24 dm <sup>3</sup> at rtp).    |
|       |                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                           |
|       | [3]                                                                                                                                                                                                       |
| ii)   | Use the answer from part i) to calculate the percentage yield if 42000 dm <sup>3</sup> of ethene is formed from 322 kg of ethanol at rtp.                                                                 |
|       |                                                                                                                                                                                                           |
|       | [1]                                                                                                                                                                                                       |
| g)    | Ethene can be used to form an important monomer $HOCH_2CH_2OH$ .<br>Draw the polymer formed by the monomers below, showing the structure of the repeat unit.<br>HO - C - C - C - OH and $HO - C - C - OH$ |

[3]

Total 20 marks

4. Magnesium is extracted by electrolysis of molten magnesium chloride. Write equations for the processes which occur at the anode and cathode. a) Cathode ..... Anode [4] ..... State one difference between the way in which current is conducted through molten b) magnesium chloride, and the way in which it is conducted through a metal wire. ..... ..... [2] ..... Explain why magnesium cannot be extracted from the electrolysis of magnesium c) chloride solution. ..... ..... [2] ..... d) Calculate the mass of magnesium produced in one hour when a current of 200 amps flows. (One faraday is 96000 coulombs). ..... ..... ..... ..... [3] .....

Total 11 marks

- 5. Brine, sodium chloride solution, is an important material for the manufacture of chlorine by electrolysis.
- a) Write equations for the processes which occur at the anode and cathode during the electrolysis of brine.

|       | Cathode                |                                                                                      |      |
|-------|------------------------|--------------------------------------------------------------------------------------|------|
|       | Anode                  |                                                                                      | [4]  |
| b)    |                        | w the electrolysis products are prevented from reacting together in the s equipment. | •    |
|       |                        |                                                                                      |      |
|       |                        |                                                                                      | [2]  |
| c) i) | Describe a             | test to show the presence of bromide ions in a sample of sea water.                  | [~]  |
|       |                        |                                                                                      |      |
|       |                        |                                                                                      | [2]  |
|       |                        |                                                                                      | [~]  |
| ii)   | Sea water of halide io | can be used to make the brine. It contains many a significant amount ns.             |      |
|       | Explain wh             | y the test for bromide ions carried out on sea water would not be reliab             | ole. |
|       |                        |                                                                                      |      |
|       |                        |                                                                                      |      |
|       |                        |                                                                                      | [2]  |
|       |                        | Total 10 marks                                                                       |      |

 A titration was carried out using 20.00 cm<sup>3</sup> samples of dilute sulphuric acid and sodium hydroxide solutions. The results are shown in the table.

|                              | 1st titration | 2nd titration | 3rd titration |
|------------------------------|---------------|---------------|---------------|
| 2nd burette<br>reading       | 15.00         | 12.30         | 14.70         |
| 1st burette<br>reading       | 2.30          | 0.10          | 2.50          |
| Total volume of<br>NaOH used | 12.70         |               |               |

a) Complete the table.

[2]

b) Using the results in the table, explain why it was necessary to carry out three titrations.

.....

- .....[2]
- c) State two pieces of glass apparatus (other than a burette) needed to carry out a titration.

.....

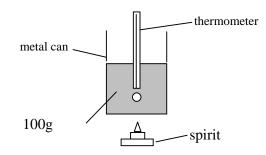
.....[2]

d) The equation for the reaction is

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ 

The concentration sodium hydroxide (NaOH) solution used in the titration is 0.2 mol dm<sup>-3</sup>.

Using the results from the 3rd titration, calculate the concentration in mol dm<sup>-3</sup> of the dilute sulphuric acid.


[4]

Total 10 marks

| 7. a) | 7. a) When methane is burnt heat energy is released into the surroundings.<br>What name is given to this type of reaction?                                                |           |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| b)    |                                                                                                                                                                           |           |  |  |  |
| 1     | $ \begin{array}{cccc} H \\ H \\ H \\ H \\ H \\ H \end{array} O = O \\ H \\$                                                       |           |  |  |  |
|       | H O=O H-O-H                                                                                                                                                               |           |  |  |  |
| i)    | Name two different bonds which are broken during the reaction.                                                                                                            |           |  |  |  |
|       | 1                                                                                                                                                                         | [1]       |  |  |  |
|       | 2                                                                                                                                                                         | [1]       |  |  |  |
| ii)   | Which two bonds are made during the reaction?                                                                                                                             |           |  |  |  |
|       | 1                                                                                                                                                                         | [1]       |  |  |  |
|       | 2                                                                                                                                                                         | [1]       |  |  |  |
| iii)  | Calculate the overall energy change for the reaction between methane and $oxy$ The bond energies (in kJ mol <sup>-1</sup> ) are C-H: 435 , O=O: 497 , C=O: 803 , H-O: 464 | gen.<br>) |  |  |  |
|       |                                                                                                                                                                           |           |  |  |  |
|       |                                                                                                                                                                           |           |  |  |  |
|       |                                                                                                                                                                           |           |  |  |  |
|       |                                                                                                                                                                           |           |  |  |  |
|       |                                                                                                                                                                           | [4]       |  |  |  |

**Total 9 marks** 

8. Look at the diagram. It shows the apparatus used to calculate the energy released when fuel is burnt.



The table below shows the results when 1.0 g of each fuel is burnt.

| fuel     | temperature of water at<br>start | temperature of water at end |
|----------|----------------------------------|-----------------------------|
| ethanol  | 20°C                             | 40°C                        |
| paraffin | 19°C                             | 58°C                        |
| petrol   | 21°C                             | 42°C                        |

| a) | Which fuel released the least amount of heat energy?                                                                                                                                                   |       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    |                                                                                                                                                                                                        | [1]   |
|    | Explain your answer                                                                                                                                                                                    |       |
| b) | Calculate the energy transferred when 1.0 g of ethanol burns. (The specific heat of capacity of water is 4.2 J <sup>-1</sup> g <sup>-1</sup> $^{\circ}$ C).                                            | [1]   |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        | [3]   |
| c) | Calculate the enthalpy change, in kJ mol <sup>-1</sup> , when 2.0 g of ethanol, C <sub>2</sub> H <sub>5</sub> OH, b Give your answer the correct sign. (Relative atomic masses: O = 16; H = 1; C = 12) | urns. |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                        | [4]   |
|    | Total 9                                                                                                                                                                                                | marks |